
Generic Image Processing With Climb

Laurent Senta
senta@lrde.epita.fr

Christopher Chedeau
christopher.chedeau@lrde.epita.fr

Didier Verna
didier.verna@lrde.epita.fr

Epita Research and Development Laboratory
14-16 rue Voltaire, 94276 Le Kremlin-Bicêtre

Paris, France

ABSTRACT
Categories and Subject Descriptors
I.4.0 [Image Processing And Computer Vision]: Gen-
eral—image processing software; D.2.11 [Software Engi-
neering]: Software Architectures—Data abstraction, Domain-
specific architectures

General Terms
Design, Languages

Keywords
Generic Image Processing, Common Lisp

1. INTRODUCTION
Climb is a generic image processing library written in Com-
mon Lisp. It comes with a set of built-in algorithms such as
erosion, dilation and other mathematical morphology oper-
ators, thresholding and image segmentation.

The idea behind genericity is to be able to write algorithms
only once, independently from the data types to which they
will be applied. In the Image Processing domain, being fully
generic means being independent from the image formats,
pixels types, storage schemes (arrays, graphs, dimensions)
etc. Such level of genericity, however, may induce an impor-
tant performance cost.

In order to reconcile genericity and performance, the LRDE1

has developed an Image Processing platform called Olena2.
Olena is written in C++ and uses its templating system
abundantly. Olena is a ten years old project, well-proven
both in terms of usability, performance and genericity. [2]

In this context, the goal of Climb is to use this legacy for
proposing another vision of the same domain, only based on

1EPITA Research and development laboratory
2http://olena.lrde.epita.fr

a dynamic language. Common Lisp provides the necessary
flexibility and extensibility to let us consider several alter-
nate implementations of the model provided by Olena, from
the dynamic perspective.

First, we provide a survey of the algorithms readily available
in Climb. Next, we present the tools available for compos-
ing basic algorithms into more complex Image Processing
chains. Finally we describe the generic building blocks used
to create new algorithms, hereby extending the library.

2. FEATURES
Climb provides a basic image type with the necessary load-
ing and saving operations, based on the lisp-magick library.
This allows for direct manipulation of many images formats,
such as PNG and JPEG. The basic operations provided by
Climb are loading an image, applying algorithms to it and
saving it back. In this section, we provide a survey of the
algorithms already built in the library.

2.1 Histograms
A histogram is a 2D representation of image information.
The horizontal axis represents tonal values, from 0 to 255
in common grayscale images. For every tonal value, the
vertical axis counts the number of such pixels in the image.
Some Image Processing algorithms may be improved when
the information provided by a histogram is known.

Histogram Equalization. An image (e.g. with a low con-
trast) does not necessarily contain the full spectrum of in-
tensity. In that case, its histogram will only occupy a nar-
row band on the horizontal axis. Concretely, this means
that some level of detail may be hidden to the human eye.
Histogram equalization identifies how the pixel values are
spread and transforms the image in order to use the full
range of gray, making details more apparent.

Plateau Equalization. Plateau equalization is used to re-
veal the darkest details of an image, that would not oth-
erwise be visible. It is a histogram equalization algorithm
applied on a distribution of a clipped histogram. The pixels
values greater than a given threshold are set to this thresh-
old while the other ones are left untouched.

2.2 Threshold

Thresholding is a basic binarization algorithm that converts
a grayscale image to a binary one. This class of algorithms
works by comparing each value from the original image to a
threshold. Values beneath the threshold are set to False in
the resulting image, while the others are set to True.

Climb provides 3 threshold algorithms:

Basic threshold. Apply the algorithm using a user-defined
threshold on the whole image.

Otsu Threshold. Automatically find the best threshold value
using the image histogram. The algorithm picks the value
that minimizes the spreads between the True and False do-
mains as described by Nobuyuki Otsu [4].

Sauvola threshold. In images with a lot of variation, global
thresholding is not accurate anymore, so adaptive threshold-
ing must be used. The Sauvola thresholding algorithm [5]
picks the best threshold value for each pixel from the given
image using its neighbors.

2.3 Watershed
Watershed is another class of image segmentation algorithms.
Used on a grayscale image seen as a topographic relief, they
extract the different basins within the image. Watershed al-
gorithms produce a segmented image where each component
is labeled with a different tag.

Climb provides a implementation of Meyer’s flooding algo-
rithm [3]. Components are initialized at the “lowest” region
of the image (the darkest ones). Then, each component is
extended until it collide with another one, following the im-
age’s topography.

2.4 Mathematical Morphology
Mathematical Morphology used heavily in Image Processing.
It defines a set of operators that can be cumulated in order
to extract specific details from images.

Mathematical Morphology algorithms are based on the ap-
plication of a structuring element to every points of an im-
age, gathering information using basic operators (e.g. logical
operators and, or) [6].

Erosion and Dilation. Applied on a binary image, these
algorithms respectively erodes and dilate the True areas in
the picture. Combining these operators leads to new algo-
rithms:

Opening Apply an erosion then a dilation. This removes
the small details from the image and opens the True

shapes.

Closing Apply a dilation then an erosion. This closes the
True shapes.

Mathematical Morphology can also be applied on grayscale
images, leading to news algorithms:

TopHat Sharpen details

Laplacian operator Extract edges

Hit-Or-Miss Detect specific patterns

3. COMPOSITION TOOLS
Composing algorithms like the ones described in the previ-
ous section is interesting for producing more complex image
processing chains. Therefore, in addition to the built-in al-
gorithms that Climb already provides, a composition infras-
tructure is available.

3.1 Chaining Operators
3.1.1 The $ operator

The most essential form of composition is the sequential one:
algorithms are applied to an image, one after the other.

Programming a chain of algorithms by hand requires a lot
of variables for intermediate storage of temporary images.
This renders the code cumbersome to read an maintain.

To facilitate the writing of such a chain, we therefore pro-
vide a chaining operator which automates the plugging of
an algorithm’s output to the input of the next one. Such
an operator would be written as follows in traditional Lisp
syntax:

(image−save
(a lgo2

(a lgo1
(image−load ‘ ‘ image . png ’ ’)
param1)

param2)
‘ ‘ output . png ’ ’)

Unfortunately, this syntax is not optimal. The algorithms
must be read in reverse order, and arguments end up far
away from the function to which they are passed.

Inspired by Clojure’s Trush operator (->) 3and the JQuery4

chaining process, Climb provides the $ macro which allows
to chain operations in a much clearer form.

$ ((image−load ‘ ‘ image . png ’ ’)
(a lgo1 param1)
(a lgo2 param2)
(image−save))

3.1.2 Flow Control
In order to ease the writing of a processing chain, the $

macro is equipped with several other flow control operators.

• The // operator splits the chain into several indepen-
dent subchains that may be executed in parallel.

3http://clojure.github.com/clojure/clojure.
core-api.html#clojure.core/->
4http://api.jquery.com/jQuery/

• The quote modifier (’) allows to execute a function
outside the actual processing chain. This is useful for
doing side effects (see the example below).

• The $1, $2, etc. variables store the intermediate results
from the previous executions, allowing to use them ex-
plicitly as arguments in the subsequent calls in the
chain.

• The # modifier may be used to disrupt the implicit
chaining and let the programmer use the $1, etc. vari-
ables explictly.

These operators allow for powerful chaining schemes, as il-
lustrated below:

($ (load ‘ ‘ l enagray . png ’ ’)

(//
(’ (timer−s t a r t)

(otsu)
’ (timer−pr in t ”Otsu ”)
(save ”otsu . png ”)) ; $1

(’ (timer−s t a r t)
(sauvola (box2d 1))

’ (timer−pr in t ”Sauvola 1”)
(save ”sauvola1 . png ”)) ; $2

(’ (timer−s t a r t)
(sauvola (box2d 5))

’ (timer−pr in t ”Sauvola 5”)
(save ”sauvola5 . png ”))) ; $3

(//
(#(d i f f $1 $2)

(save ‘ ‘ d i f f −otsu−sauvola1 . png ’ ’))
(#(d i f f $1 $3)

(save ‘ ‘ d i f f −otsu−sauvola5 . png ’ ’))
(#(d i f f $2 $3)

(save ‘ ‘ d i f f −sauvola1−sauvola5 . png ’ ’))))

3.2 Morphers
As we saw previously, many Image Processing algorithms
result in images of a different type than the original image
(for instance the threshold of a grayscale image is a boolean
one). What’s more, several algorithms can only be applied
on images of a specific type (for instance, watershed may
only be applied to grayscale images).

Programming a chain of algorithms by hand requires a lot of
explicit conversion from one type to another. This renders
the code cumbersome to read an maintain.

To facilitate the writing of such a chain, we therefore provide
an extension of the Morpher concept introduced in Olena
with SCOOP2 [1] generalized to any object with a defined
communication protocol. Morphers are wrappers created
around an object to modify how it is viewed from the outside
world.

Two main categories of morphers are implemented: value
morphers and content morphers.

Value morpher. A value morpher operates a dynamic trans-
lation from one value type to another. For instance, an RGB
image can be used as a grayscale one when seen through a
morpher that returns the pixels intensity instead of their
original color. It is therefore possible to apply a watershed
algorithm on a colored image in a transparent fashion, with-
out actually transforming the original image into a grayscale
one.

Content morpher. A content morpher operates a dynamic
translation from one image structure to another. For in-
stance, a small image can be used as a bigger one when seen
through a morpher that returns a default value (e.g. black),
when accessing coordinates outside the original image do-
main. It is therefore possible to apply an algorithm built
for images with a specific size (e.g. power of two), without
having to extend the original image.

Possible uses for content morphers include restriction (parts
of the structures being ignored), addition (multiple struc-
tures being combined) and reordering (structures order be-
ing modified).

4. EXTENSIBILITY
The pixels of an image are usually represented aligned on
a regular 2D grid. In this case, the term “pixel” can be
interpreted in two ways, the position and the value, which
we need to clearly separate. Besides, digital images are not
necessarily represented on a 2D grid. Values can be placed
on hexagonal grids, 3D grids, graphs etc. In order to be
sufficiently generic, we hereby define an image as a function
from a position (a site) to a value: img(site) = value.

A truly generic algorithm should not depend on the under-
lying structure of the image. Instead it should rely on higher
level concepts such as neighborhoods, iterators, etc. More
precisely, we have identified 3 different levels of genericity,
as explained below.

4.1 Genericity on values
Genericity on values is based on the CLOS dispatch. Us-
ing multimethods, generic operators like comparison and
addition are built for each value type, such as RGB and
Grayscale.

4.2 Genericity on structures
The notion of “site” provides an abstract description for any
kind of position within an image. For instance, a site might
be an n-uplet for an N-D image, a node within a graph, etc.

Climb also provides a way to represent the regions of an
image through the site-set object. This object is used in or-
der to browse a set of coordinates and becomes particularly
handy when dealing with neighborhoods. For instance, the
set of nearest neighbors, for a given site, would be a list of
coordinates around a point for an N-D image, or the con-
nected nodes in a graph.

4.3 Genericity on implementations
Both of the kinds of genericity described previously allow
algorithm implementors to produce a single program that

works with any data type. Some algorithms, however, may
be implemented in different ways when additional informa-
tion on the underlying image structure is available. For in-
stance, iterators may be implemented more efficiently when
we know image contents are stored in an array. We can also
distinguish the cases where a 2D image is stored as a matrix
or a 1D array of pixels etc.

Climb provides a property description and filtering system
that gives a finer control over the algorithm selection. This is
done by assigning properties such as :dimension = :1D, :2D,
etc. to images. When defining functions with the defalgo

macro, these properties are handled by the dispatch system.
The appropriate version of a function is selected at runtime,
depending on the properties implemented by the processed
image.

5. CONCLUSION
Climb is a generic Image Processing library written in Com-
mon Lisp. It is currently architected as two layers targeting
two different kinds of users.

• For an image processing practitioner, Climb provides
a set of built-in algorithms, composition tools such as
the chaining operator and morphers to simplify the
matching of processed data and algorithms IO.

• For an algorithm implementor, Climb provides a very
high-level domain model articulated around three lev-
els of abstraction. Genericity on values (RGB, Grayscale
etc.), genericity on structures (sites, site sets) and gener-
icity on implementations thanks to properties.

The level of abstraction provided by the library makes it
possible to implement algorithms without any prior knowl-
edge on the images to which they will be applied. Conversly
supporting a new image types should not have any impact
on the already implemented algorithms.

From our experience, it appears that Common Lisp is very
well suited to highly abstract designs. The level of generic-
ity attained in Climb is made considerably easier by Lisp’s
reflexivity and CLOS’ extensibility. Thanks to the macro
system, this level of abstraction can still be accessed in a rel-
atively simple way by providing domain-specific extensions
(e.g. the chaining operators).

Although the current implementation is considered to be
reasonably stable, Climb is still a very yound project and
should still be regarded as a prototype. In particular, noth-
ing has been done in terms of performance yet, as our main
focus was to design a very generic and expressive API. Fu-
ture work will focus on:

Genericity By providing new data types like graphs, and
enhancing the current property system.

Usability By extending the $ macro with support for au-
tomatic insertion of required morphers and offering a
GUI for visual programming of complex Image Pro-
cessing chains.

Performance By improving the state of the current im-
plementation, exploring property-based algorithm op-
timization and using the compile-time facilities offered
by the language.

Climb is primarily meant to be an experimental plateform
for exploring various generic paradigms from the dynamic
languages perspective. In the future however, we also hope
to reach a level of usability that will trigger interest amongst
Image Processing practitioners.

6. REFERENCES
[1] Th. Géraud and R. Levillain. Semantics-driven

genericity: A sequel to the static C++ object-oriented
programming paradigm (SCOOP 2). In Proceedings of
the 6th International Workshop on Multiparadigm
Programming with Object-Oriented Languages
(MPOOL), Paphos, Cyprus, July 2008.

[2] R. Levillain, Th. Géraud, and L. Najman. Why and
how to design a generic and efficient image processing
framework: The case of the Milena library. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 1941–1944, Hong Kong,
Sept. 2010.

[3] F. Meyer. Un algorithme optimal pour la ligne de
partage des eaux, pages 847–857. AFCET, 1991.

[4] N. Otsu. A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man and
Cybernetics, 9(1):62–66, Jan. 1979.

[5] J. Sauvola and M. Pietikäinen. Adaptive document
image binarization. Pattern Recognition, 33(2):225–236,
2000.

[6] P. Soille. Morphological Image Analysis: Principles and
Applications. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2 edition, 2003.

